含风电的日前电力市场出清优化模型Optimization Model of Day-ahead Power Market Clearing Including Wind Power
张学军,景江帆
摘要(Abstract):
风电大规模并网引入了更多的不确定性,电力市场供需平衡面临更大的挑战。应用预测误差描述风电机组出力和负荷的不确定性,采用拉丁超立方采样法生成随机场景集,以购电费用少、供电可靠性高、风电消纳量大为目标,选取机组出力、备用容量、弃风和失负荷量为决策变量,建立了日前电力市场出清模型。模型中,采用交流功率方程约束节点功率平衡,使得在日前电力市场出清时能精确地考虑网络损耗和电能质量问题,提高了出清方案的可行性。以IEEE-30节点系统为例验证了模型。
关键词(KeyWords): 日前电力市场;风力发电;拉丁超立方采样;备用容量;网络损耗
基金项目(Foundation): 青海省重点研发与转化计划资助项目(2019-GX-C27)
作者(Author): 张学军,景江帆
DOI: 10.19635/j.cnki.csu-epsa.000378
参考文献(References):
- [1]王晛,张凯,张少华(Wang Xian,Zhang Kai,Zhang Shaohua).风电参与投标的日前电力市场与需求响应交易市场联合均衡分析(Joint equilibrium analysis of dayahead electricity market and DRX market considering wind power bidding)[J].中国电机工程学报(Proceedings of the CSEE),2018,38(19):5738-5750.
- [2]邵成成,王锡凡,王秀丽,等(Shao Chengcheng,Wang Xifan,Wang Xiuli,et al).考虑风电的电力联营市场日前出清模型(An electricity market clearing model for dayahead pool market considering wind power)[J].电力系统自动化(Automation of Electric Power Systems),2014,38(13):45-50.
- [3] Zhang Yu,Giannakis G B. Distributed stochastic market clearing with high-penetration wind power[J]. IEEE Trans on Power Systems,2016,31(2):895-906.
- [4] Fernandez-Blanco R,Arroyo J M,Alguacil N. On the solution of revenue-and network-constrained day-ahead market clearing under marginal pricing-partⅠ:an exact bilevel programming approach[J]. IEEE Trans on Power Systems,2017,32(1):208-219.
- [5]吴栋梁,王扬,郭创新,等(Wu Dongliang,Wang Yang,Guo Changxin,et al).电力市场环境下考虑风电预测误差的经济调度模型(An economic dispatching model considering wind power forecast errors in electricity market environment)[J].电力系统自动化(Automation of Electric Power Systems),2012,36(6):23-28.
- [6]江岳文,陈梅森(Jiang Yuewen,Chen Meisen).基于鲁棒后悔度的日前市场购电联合优化(Joint optimization of electricity purchase in the day-ahead market based on robust regret)[J].电工技术学报(Transactions of China Electrotechnical Society),2019,34(9):1971-1983.
- [7]范宏,朱佩琳,柳璐,等(Fan Hong,Zhu Peilin,Liu Lu,et al).考虑风电和光伏出力不确定性的日调度优化方法(The method of daily scheduling optimal considering uncertainty of wind power and photovoltaic output)[J].可再生能源(Renewable Energy),2019,37(6):886-892.
- [8]周明,武昭原,贺宜恒,等(Zhou Ming,Wu Zhaoyuan,He Yiheng,et al).兼顾中长期交易和风电参与的日前市场出清模型(A day-ahead electricity market-clearing model considering medium-and long-term transactions and wind producer participation)[J].中国科学:信息科学(Scientia Sinica(Informationis)),2019,49(8):1050-1065.
- [9]周明,李琰,李庚银(Zhou Ming,Li Yan,Li Gengyin).基于随机生产模拟的日前发电-备用双层决策模型(A dayahead power generation-reserve bi-level decision-making model for power system based on probabilistic production simulation)[J].电网技术(Power System Technology),2019,43(5):1606-1613.
- [10]周任军,孙嘉赣,张浩,等(Zhou Renjun,Sun Jiagan,Zhang Hao,et al).考虑双重市场的含风电电力系统双层随机优化调度(Bi-level stochastic programming and dispatch of wind integrated power system considering dual market)[J].电力系统及其自动化学报(Proceedings of the CSU-EPSA),2018,30(1):15-21.
- [11]李海波,鲁宗相,乔颖,等(Li Haibo,Lu Zongxiang,Qiao Ying,et al).大规模风电并网的电力系统运行灵活性评估(Assessment on operational flexibility of power grid with grid-connected large-scale wind farms)[J].电网技术(Power System Technology),2015,39(6):1672-1678.
- [12] Jiang Yuewen,Chen Meisen,You Shi. A unified trading model based on robust optimization for day-ahead and real-time markets with wind power integration[J]. Energies,2017,10(4):554-572.
- [13]胡美玉,胡志坚(Hu Meiyu,Hu Zhijian).多场景技术与盲数相结合的配电系统可靠性评估(Distribution system reliability evaluation based on multiple scenarios technique and blind number)[J].电力系统保护与控制(Power System Protection and Control),2017,45(1):21-27.
- [14]艾小猛,塔伊尔江·巴合依,杨立滨,等(Ai Xiaomeng,Tayierjiang B,Yang Libin,et al).基于场景集的含风电电力系统旋转备用优化(Optimizing the spinning reserve in wind power system using scenario method)[J].电网技术(Power System Technology),2018,42(3):835-841.
- [15] Doostizadeh M,Aminifar F,Ghasemi H,et al. Energy and reserve scheduling under wind power uncertainty:an adjustable interval approach[J]. IEEE Trans on Smart Grid,2016,7(6):2943-2952.
- [16] Wu Junli,Zhang Buhan,Deng Weisi,et al. Application of Cost-CVaR model in determining optimal spinning reserve for wind power penetrated system[J]. International Journal of Electrical Power&Energy Systems,2015,66:110-115.